Basis und Dimension eines Vektorraumes

Definition:

Jede Menge linear unabhängiger Vektoren, aus denen sich jeder Vektor des Raumes \mathbb{R}^3 bzw. der Ebene \mathbb{R}^2 erzeugen lässt, bildet eine Basis des \mathbb{R}^3 bzw. des \mathbb{R}^2 .

Folgerung:

Drei bzw. zwei linear unabhängige Vektoren bilden eine Basis des \mathbb{R}^3 bzw. des \mathbb{R}^2 . Jeder weitere Vektor lässt sich dann als Linearkombination der Basisvektoren darstellen.

Die Anzahl der Vektoren einer Basis heißt Dimension.

Folgerung:

Die Ebene \mathbb{R}^2 ist zweidimensional, der Anschauungsraum \mathbb{R}^3 ist dreidimensional.

Aufgaben:

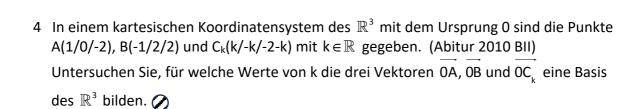
1 Prüfen Sie, ob die Vektoren
$$\vec{a} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}, \vec{b} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \text{ und } \vec{c} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \text{ eine Basis des } \mathbb{R}^3$$
 bilden. \bigcirc

2 Bestimmen Sie den Wert von $k \in \mathbb{R}$ so, dass die Vektoren

$$\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \vec{b} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \text{ und } \vec{c} = \begin{pmatrix} k \\ 1 \\ 0 \end{pmatrix} \text{ eine Basis des } \mathbb{R}^3 \text{ bilden.}$$

3 Bestimmen Sie den Wert von $k \in \mathbb{R}$ so, dass die Vektoren

$$\vec{a} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \vec{b} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \text{ und } \vec{c} = \begin{pmatrix} 4 \\ 1 \\ k \end{pmatrix} \text{ eine Basis des } \mathbb{R}^3 \text{ bilden. }$$



5.0 Im \mathbb{R}^3 sind die folgenden Vektoren gegeben:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \vec{b} = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}, \vec{c_p} = \begin{pmatrix} p+4 \\ 2p \\ 3-4p \end{pmatrix} \text{ mit } p \in \mathbb{R} \text{ und } \vec{d} = \begin{pmatrix} -5 \\ 2 \\ -3 \end{pmatrix}. \text{ (Abitur 2017 BI)}$$

- 5.1 Bestimmen Sie den Wert des Parameters p, für den die Vektoren \vec{a} , \vec{b} und \vec{c}_p eine Basis des \mathbb{R}^3 bilden.
- 5.2 Drücken Sie den Vektor \vec{d} durch eine Linearkombination der Vektoren \vec{a} , \vec{b} und \vec{c}_{-2} (d.h. für p = -2) aus. \bigcirc

Lösungen:

1

$$\lambda_{1} \cdot \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} + \lambda_{2} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \lambda_{3} \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

(I)
$$\lambda_1 + 2\lambda_2 + \lambda_3 = 0$$

(II)
$$\lambda_1 + \lambda_2 - \lambda_3 = 0$$

(III)
$$3\lambda_1 + \lambda_2 + \lambda_3 = 0$$

- \Rightarrow das LGS ist eindeutig lösbar mit $\lambda_1 = \lambda_2 = \lambda_3 = 0$
- ⇒ die Vektoren sind linear unabhängig
- \Rightarrow die Vektoren bilden eine Basis des \mathbb{R}^3

2

$$\lambda_{1} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda_{2} \cdot \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + \lambda_{3} \cdot \begin{pmatrix} k \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

- \Rightarrow das LGS ist eindeutig lösbar mit $\lambda_1 = \lambda_2 = \lambda_3 = 0$ für alle $k \in \mathbb{R}$
- \Rightarrow die Vektoren bilden für alle k $\in \mathbb{R}$ eine Basis des \mathbb{R}^3

3

$$\lambda_{1} \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \lambda_{2} \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + \lambda_{3} \cdot \begin{pmatrix} 4 \\ 1 \\ k \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

 \Rightarrow für k \neq 0 ist das LGS eindeutig lösbar mit $\lambda_{_1}=\lambda_{_2}=\lambda_{_3}=0$ für alle k \in $\mathbb R$

 \Rightarrow für k \neq 0 bilden die Vektoren eine Basis des \mathbb{R}^3

4

$$\lambda_{1} \cdot \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + \lambda_{2} \cdot \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} + \lambda_{3} \cdot \begin{pmatrix} k \\ -k \\ -2-k \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

 \Rightarrow für k \neq 2 ist das LGS eindeutig lösbar mit $\lambda_1 = \lambda_2 = \lambda_3 = 0$ für alle k $\in \mathbb{R}$

 \Rightarrow für k \neq 2 bilden die Vektoren eine Basis des \mathbb{R}^3

5.1

$$\lambda_{1} \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + \lambda_{2} \cdot \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} + \lambda_{3} \cdot \begin{pmatrix} p+4 \\ -2p \\ 3-4p \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

- \Rightarrow für p \neq 1 ist das LGS eindeutig lösbar mit $\lambda_1 = \lambda_2 = \lambda_3 = 0$
- ⇒ die Vektoren sind linear unabhängig
- \Rightarrow die Vektoren bilden eine Basis des \mathbb{R}^3

5.2

$$\lambda_{1} \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + \lambda_{2} \cdot \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} + \lambda_{3} \cdot \begin{pmatrix} 2 \\ -4 \\ 11 \end{pmatrix} = \begin{pmatrix} -5 \\ 2 \\ -3 \end{pmatrix}$$

$$(III) \Rightarrow -24\lambda_3 = -24 \Rightarrow \lambda_3 = 1$$

$$(II) \Rightarrow -8\lambda_2 - 8 \cdot 1 = 12 \Rightarrow \lambda_2 = -2.5$$

$$(I) \Rightarrow \lambda_1 - 4 \cdot 2, 5 + 2 \cdot 1 = -5 \Rightarrow \lambda_1 = 3$$

$$\Rightarrow \vec{d} = 3 \cdot \vec{a} - 2, 5 \cdot \vec{b} + \vec{c}_{2}$$